The Spatial Scale of Synaptic Protein Allocation during Homeostatic Plasticity

Chao Sun¹, Andreas Nold¹, Tatjana Tchumatchenko¹, Mike Heilemann², Erin M. Schuman¹*

¹Max Planck Institute for Brain Research, Frankfurt am Main, DE

²Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, DE

bioRxiv doi: https://doi.org/10.1101/2020.04.29.068833

- Global increase of locally synthesized protein at synapses and in dendrites
- Nascent synaptic protein was allocated fairly among dendritic branches

Note: *p<0.05, **p<0.01, ***p<0.001

- Dendritic neighborhoods of synapses (\sim 10 μ m) segregated based on synapse density
- Nascent synaptic protein was allocated fairly among synaptic neighborhoods during homeostatic upscaling

Individual synapses are highly autonomous:

- Local synapse density did not predict synaptic protein allocation
- Protein allocation of neighboring synapses poorly predicted synaptic protein allocation